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Abstract. The well known BirkhoK-Gustavson normal form theory suRers from the 
restraint that the quadratic part of the Hamiltonian must be of the harmonic-oscillator 
type. In this paper we describe a generalizcd normal form concept which can be applied to 
o t y  polynomial Hamiltonian, thus rendering the above restriction to harmonic oscillators 
unnecessary. As in the classical theory. we can derive an asymptotic expression for a second 
integral of motion. The truncated formal integral, the quasi-inlcglol, exhibits g o d  conver- 
gence properties in regions of phase space where the dynamics is regular, whereas in chaotic 
regions the convergence deteriorates. In order to .exemplify these findings we apply the 
theory lo  a Hamiltonian describing a particular type of magnetic bottle which cannot be 
analysed using the BirkhoK-Gustavson normal form. We calculate the quasi-integrals ‘up 
to and including the 14th order and analyse their convergence properties. 

1. Introduction 

In this paper we describe a generalization of a very powerful tool for the analysis of 
Hamiltonian dynamical systems: the theory of nornial forms. Originally developed by 
Birkhoff in 1927 [ I ] ,  who considered only non-resonant systems near an equilibrium 
point, the theory was brought into its classical form by Gustavson [Z] who showed 
how to normalize? even in the presence of resonant frequencies. Later important contri- 
butions were made by Bryuno [3]. The Birkhoff-Gustavson normal form (BCNF) has 
received considerable attention because of its utility in finding approximate constants 
of  motion [4-81 and quantizing nonlinear Hamiltonian systems [9-131. 

The key idea of the theory is to systematically perform a series of canonical trans- 
formations, thus bringing the Hamiltonian into a particularly simple form, its ‘normal 
form’. In this cmtext simplicity means the possibility to read off an expression for a 
second integral of motion directly from the normal form Hamiltonian. More precisely, 
for a Hamiltonian H in BCNF the quadratic part of  H is proven to be an integral of 
motion. 

Gustavson considered an autonomous Hamiltonian system of n degrees of freedom 
in the vicinity of a stable equilibrium point, such that in lowest-order approximation 

t Throughout this paper, the term ‘normalization’ refers to the process of transforming a Hamiltonian into 
i(s normal form. This is not to be confused with. say. the normalization o r a  vector. 
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the Hamiltonian can be written as an n-dimensional harmonic oscillator, while the 
anharmonic parts of the system are given by a power series of order three and higher 
in the coordinates q6R" and the momentapER": 
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( W  

with real frequencies U,> 0 and If1 being a homogoneous polynomial of degree 1 in qv 
and p v ,  Gustavson's theory necessarily requires the quadratic part of If to be of the 
particular form ( I h ) .  Only for this special H2 he can define his normal form, prove 
normalizability and show how to obtain (an asymptotic expression for) a second invari- 
ant. In section 2.1 of this paper we will show in detail how this restriction comes about. 

Several attempts have been made to approach the problem from a more general 
point of view, making it possible to normalize not only Hamiltonians of the Gustavson 
type [ 14-18]. However, until recently there has been no general method that could be 
applied to Hamiltonians with an arbitrary If2 term. I t  is this problem that we will 
address and exemplify in the following sections. Similar (and more general) results have 
been obtained by Meyer and Hall in [19], though their approach-and especially their 
proof of what corresponds to our main theorem (cf section 2.3)-is quite different from 
ours. It is our goal to give a more easily readable account of the theory and to demon- 
strate in some detail the practical application to a given Hamiltonian and the calculation 
of the quasi-integral. 

In section 2 we formulate the normalization process in terms of Lie operators and 
Lie transformations and use these techniques to develop a generalized approach, suitable 
for any Ij2+0. Section 3 is dedicated to the application of the generalized normal form 
to a model system that cannot be analysed by means of the Birkhoff-Gustavson theory. 
As the model system we have chosen, a particular type of magnetic bottle that can be 
used as an ion trap in laboratory experiments. Our main result from the normal form 
calculations is the derivation of an expression for a formal integral of motion I up to 
and including the 14th order. The convergence properties of this quasi-integral are 
analysed in section 3.2; I exhibits a surprisingly rich structure and can  be used to 
reproduce reasonably well the corresponding Poincark plot. 

" 0, 
f fz(q,p)= c +Z,+P2,) 

"e I 

2. Normal forms 

In section 2.1 we give an outline of the BGNF theory using a Lie transformation tech- 
nique [20.21]. Sections 2.2 and 2.3 then show how to obtain a generalized normal form 
and its associated formal integral (quasi-integral). Here we draw mainly from the work 
of Dragt and Finn [16, 171 and from [22].  

2.1. Lie transfovinalions and Ilie Birkltoff-Gusfavson normal form 

Consider an autonomous Hamiltonian system with n degrees of freedom and a 
fixed point in the origin. We can always write the Hamiltonian If as a fomial power 
series in the phase-space coordinates qv.  p v ,  v = l ,  2,. . . ,n. With z= 
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(q l , .  . . , q n , p l , .  . . ,PJEIW"'  we have 

H(z) = 1 fIl(Z) 
I>Z 

where the HI are homogeneous polynomials of  degree 1: 

H&)= hmzm€% 
Iml=l 

Here 3 is the (2'z!7 ')-dimensional vector space of homogeneous polynomials of degree 
I in 2n variables, and we employ the multiindex notation 

Note that the dimension of  2, grows rapidly with 1 (e.g. for n=2  we have dim(YI4)= 
680), such that any manipulation of H ,  for larger values of I will have to be done by 
computer algebra rather than 'by hand'. We denote the space of all formal power series 
beginning with degree 2 by 2'= @E2 YI. 

The Lie operafor adF adjoint to a power series F E Y  is the Poisson bracket of F 
with some G E Y :  

addG):=(G,F)  = 
aq, ap, ap, aqi 

(3) 

adF is a linear operator on 2 for all F. The Lie operator adjoint to the quadratic part 
of the Hamiltonian and restricted to the subspace xn is of central importance: 

4,:=adH21z,, in 2 2. (4) 

Note that .4,2 maps monomials of  degree i n  to monomials of degree !n. 
The Lie trunsforniution associated with F E Y  is the exponential of adF: 

Lie transformations are an adequate tool for Hamiltonian normal form theory because 
they are canonical [20]. 

Let Ii be a Hamiltonian of  type ( I ) .  H is in Birkho&Gustuuson norind forin up to 
order in if 

.dj (Hj )  = 0 for 1=2,3, .  . . ,112. (6) 

H is in Birkhof-Gustuuson nor~~rulforni if (6) holds for all b 2 .  This definition is 
motivated by the fact that H2 is an integral of motion if If is in BGNF: 

d , ( I f J = O  VI  c> { I f ,  I f z ) = O .  

For any given Hamiltonian N of type (1) we can proceed to the BCNF o f  I I  in the 
following way. With some E,,€%,,, determine a new Hamiltonian G = E I > ~  G, by 
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More explicitly we have 

U M I31gel el ul 

G, + GT+ . . . = f f 2  + . . . + ff," + ad&f2) + 6(lzl""" I ) 

where & ( ~ z ~ " ' + ' )  stands for terms of order H I +  1 and higher. Collecting terms of equal 
order we get, using a&kfl,(HJc%+i(,n-2): 

G/=Hi for 2<  l<nq ( 8 4  
G,,,=H,,,+ad6,,(W. (8b )  

Assuming that H is already in BGNF up to order f n -  I ,  equation (8) allows several 
important conclusions. First of all, according to (sa) the contributions of order less 
than I J Z  remain unchanged under the Lie transformation associated to E,>.  This shows 
that the transformed Hamiltonian G is a t  least in normal form up to order m- 1, too. 
Secondly, (8b) indicates how to obtain a Hamiltonian G which is in BGNF even up to 
order JH: From (Xh) we get 

(9) H,,, = G,,, + .d.(E.). 
This horiiological equation [23] must be solved for E,, and G,. under the additional 
condition 

d,.(G,,J =o. (10) 

G,,,EKer(j.%.) = { PsZnIj.%@) = 0). 

In other words, C,,, must be in the kemel (or null space) of d,,,: 

Thus we have the following iterative process for the normalization of It .  For all r r t b 3  
we first solve the homological equation for the polynomials G,,, and E,, and then obtain 
the remaining terms G,,,,, of the new Hamiltonian by evaluating (7). The calculation 
of the G, is a tedious but straightfonvard task that can be left to computer algebra. 
The non-trivial key point is solving the homological equation. 

Let us assume that the vector space xn can be decomposed into the direct sum of 
the kernel and range spaces of d,,,,,, 

%,= Ker(.d,JOIm(,F%,,) ( 1 1 )  

with Im(.,c6,,)=.d,,,(.Z,,). Then ft,,,c.Zn can uniquely be split into its kernel and range 
components 

I?l.,=H:,,+ If: (124  

)];>,E Ker (4 , )  (126) 

ffk W.d,,J. (124 

G,,, = If;,, . (13) 

.d.(E,,) = f fb  . (14) 

with 

Hence, G,. is uniquely determined by the kernel component of fL,: 

Finally F,,, can be obtained by inverting 

Since there may be several pre-images of If:, under s4,, (Fr,< is uniquely determined by 
(14) up to any element of the null space of d,,) the normalization procedure is not 
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unambiguous. However, we can always achieve unambiguity by additionally requiring 
E,, to lie in the range space of .,d ,,,. 

The key pioint of the above procedure is the splitting ( 1  I ) .  By means of the canonical 
transformation ( q , p ) ~ ( l j , p 3  with 

I 
l j  = - ( q  - ip) 

4 

Jz 
I 

j =  -- ( p  - iq) 

Gustavson showed that for a Hamiltonian of type ( I )  equation (1 1) holds. since in the 
new coordinates 4 , j  the corresponding transformed operator .& is diagonal. Since ..&, 
yields the splitting ( I  I ) ,  ..U‘,,, does as well. Th.is proves the applicability of the BGNF 
theory to Hamiltonians of the Gustavson type ( I ) :  Every such Hamiltonian H can, 
by means of a formal canonical transformation, be transformed into the equivalent 
Hamiltonian 

(16) 

where F,, ,E~’, , ,  and G is in BGNF. The term ‘formal’ indicates that wedo not yet consider 
the convergence properties of the power series H,  F and C. 

G= [. . .o exp(adf,) 0 exp(adF,)](X) 

2.2. The generalized normal forin 

We now turn to the generic case where Zn cannot be decomposed into the direct sum 
of the kemel and range spaces of .d,,,. As a trivial example for the way in which this 
problem arises. consider a particle with a single degree of freedom ( n =  1) which in 
lowest-order approximation is ’free’: 

H d q ,  p )  = ip’. (17) 
.U‘,,, takes on the form .U‘,,,, =p(a/aq) ,  such that we get Ker(.dJ =span{$} and Im(.d3) = 
span{pf,p2q. pq2}. and obviously 

z3# Ker(s/,)@ Im(d3). 

This shows that the normal form considered by Gustavson is not suitable for all types 
of € 1 2 .  

We circumvent this problem by using Fredholin’s allernative for S%: 

2’ , , ,=Ker( . .~ , )o lm(~~. / , . ) .  (18) 

Here. as usual, the adjoint operator .dz is defined via (RJ. .dnS)= 
(..d:,RlS)VR, SEX,,, where (.I .) is any suitable scalar product. Below we will specify 
a particular scalar product that will simplify the following expressions as much as 
possible. 

In accordance with (18) it is natural to define a new normal form. Let II be a 
Hamiltonian of type (la) with an ar.bitr.ar:y quadratic contribution H z .  We say that H 
is in generalized normal forin up to order i n  if . 

.CY: (H,) = O  for 1=3,4,. , . . i n .  . . . ~ (19) 
H is in genera1i;ednornralforni if (19) holds for all 12,3, 
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Notice that (19) is not required to hold for [=2-in contrast to the corresponding 
definition (6) of the EGNF. The reason being that in general it is impossible to normalize 
If,, since transforming H2 implies changing d,, as well. For generic H2 one has Lo 
expect .d:(H2)=ad&(H2) #O. In Gustavson’s case, however, (6) is always true for n= 
2 because the Poisson bracket of f f 2  with itself vanishes. 

In order to complete our definition of a normal form we have to  specify the explicit 
form of the scalar product. For R(z)’=C,,,=,,,  i;zj~X,? and S(Z)E%,, we set [24,22] 

where the bar denotes complex conjugation. It is easy to see that this product operation 
(. 1 .  ) indeed has the properties of a scalar product. In [ 171 a somewhat different scalar 
product was introduced by choosing a special basis of Z,, and defining it to be ortho- 
normal. These two scalar products are identical up to a normalization factor. However, 
the definition given here paves way for a more general approach and is much easier to 
use. This becomes apparent when trying to derive an explicit expression for J#:~. In 
[I71 this was only achieved for a very restricted case, namely the so-called ‘mirror 
machine’ or ‘magnetic bottle Hamiltonians’. See section 3 for a discussion of this class 
of systems. 

We first write 4, in yet another form. Linearizing Hamilton’s equations we obtain 
the Hamiltonian matrix L=JHess(H2), with the 2n-dimensional symplectic matrix 

J=(  
-id,, 

and the Hessian Hess(H2). Thus we have 

.d,,,(. ) = D,( . ) . Lz 

with the abbreviation U .  /7=E,2, ujbjfora, bEC2”. In order to find .d: we rewrite its 
definition (.df,RIS)=(RI.d,,,S) as 

where we have used the relation ( R o M * I S ) = ( R [ S o  M )  which holds for any linear 
mapping M on C”. Evaluating the time derivative yields (.d:,RIS)= 
(D,(R). L*zlS), and we obtain .d:, as 

(,&,(.)=DZ(.). L*z. (22) 
This expression is identical with (21) after conjugating and transposing L. 

In the fonn (22) df, can easily be used for determining the splitting (18) of Z,,. 
For the example (17) considered in the beginning o f  this section we obtain 
&,= y(a /ap)  and therefore Ker(.d.?) =span{$). 

The method for transforming a given Hamiltonian into its generalized normal form 
is exactly the same as the one described in the previous section; one only has to replace 
(1  217) by 

H ;,,E Ker( &,). (23) 
Since the splitting (18) holds for any HZ, we have proven that any ffa~iritrunian CUI he 
numrrlized according to the generalized definition ( I  9). 
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Note that for a Hamiltonian of Gustavson's type ( I )  the two definitions of normal 
form coincide, because in this case ..d; =-d,,,. So if N is in BGNF (up to order !it) i t  
is in generalized normal form (up to order in), too. The utility of the normal form will 
become evident in the next section. 

2.3. Quasi-integrals of motion 

By construction, for a Hamiltonian in EGNF )I2 is a formal integral of motion (see 
section 2.1). "Ne now show how lo  find^ an analogous formal integral for a Hamiltonian 
in generalized normal form. Our results are similar to the findings of Meyer and Hall 
[t9], but the proof differs in some details. We have tried to make the exposition as 
transparent as possible by focusing on just those aspects that are essential for the 
reasoning. 

We write Hz as 

H*(z)= 42 ' J - ' L z  (24) 

and decompose L by means of the Jordan-Clievalley decon~posifion [25] into its diagona- 
lizable and nilpotent parts D and N :  

L = D t N .  ( 2 9  
Existence and uniqueness of this decomposition are assured by the Jordan normal 
form theorem for matrices. Define the diagonalizable cornponerit I ( z )  and the nilpotenf 
conzponmzt K ( z )  of ff&) by 

such that H1(z)= I ( z ) + K ( z ) .  We are now in the position to prove the main theorem: 

Tlieoreiii: For a fIaiidlonian H (z) in generalized normal form the diagonalizable parr 
I ( z )  of H 2 ( z )  is a fot%ral integral of motion. 

For the proof we must show that the Poisson bracket of I with H,, vanishes for all 
nr>2. We start with n1=2 and then proceedto the case n1>2. 

By virtue of Jacobi's identity for the Poisson bracket we have 

ad,x,.,l =ad,adH,-adl,2 ad,. (27) 

This expression is zero if ad, and ad, commute. I n  order to show that the lalter is the 
case we first remark that the matrices L, D and N are infinitesimally symplectic [XI,  
i.e. they satisfy M'J+JM=O (for M = L ,  D, N ) .  Direct computation shows that for an 
infinitesimally symplectic matrix M the Lie operator adjoint to the quadratic polynomial 
P ( z ) = i z .  J - ' M z  can be written as ad,(.)=D,(.). Mz. Thus we have for the Lie 
operators 9?,n and .A<, adjoint to I and K :  

It is one of the key advantages of this formulation of the theory that we can characterize 
all the important operators d,,,, 53," and A,;, which operate in a space of the high 
dimension (Et7-l) by matrices of the considerably smaller dimension 2n: L, D and N .  
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We now show that for two commuting matrices M I ,  M2 the corresponding Lie 
operators adp,, adp, (defined as above) commute as well: 

adp, adp,(.)=Dz(Dz(.). M z z ) M l z  

=adp,adp,(.). (2% 
Because LD-Dl=O, this implies that the right-hand side of (27) is zero, and thus 

For m> 2 we proceed in the following way: We show that diagonalizability and 
nilpotence of the matrices D and N carry over to the corresponding Lie operators 9,,, 
and A&; these properties then imply that the null spaces of 9,,, and 9: coincide and 
that 9:,II,,,=O, which in turn means {Hr, , ,  I )  =d,,H,,,=O. 

Consider a unitary matrix T that transforms D into the diagonal matrix d = TDT-I. 
Inserting twice the identity T ' T i n t o  the expression for 9," we get 

{H, , I }=O.  

S , , , ( . )=D,( . ) .  TDT-' Tz. 

With E= 7'z, and denoting 9,, in the new coordinates i by a,,, we obtain 

1 ,8( . )=D,( . )  .di (30) 

Application of this transformed operator to any of the basis monomials i'of Z,,, yields, 
because b is diagonal, an eigenvalue equation with the eigenfunction 2' and a certain 
eigenvalue pj-thus diagonalizability of 9,>, is shown. 

Now consider any RES, , .  R(e"z) is a polynomial in I of degree less than or equal 
to ni(nO- I.). since by nilpotence there is some noeW such that N"O=O. This polynomial 
is related to A$, in the following way: 

d 
-R(e"z) = [D,(R) . N z ] , N , ~ = A : ~ ( R ) ~ ~ N , ~ .  
dl 

Iterating this expression and evaluating for t = O  we get 

which implies nilpotence of A$", because (31) holds for all R. 

Application of the diagonalized operator o,, (cf (30)) yields 
Identity of the null spaces of Q,, and 9:, is a direct implication of diagonalizability: 

j - k  _ -  -1 - k  _ -  (zllG:,zk)=(B2nz [ z  )-&(Z I2 )-pjGir. 

So the eigenspaces corresponding to the eigenvalue 0 of 0: and 3" are identical. 

nilpotent, because its adjoint is. With &,=B:,+.VX we obtain for any &E%,,: 
Finally, we determine how 9:, acts on polynomials in Sa. Notice that .N; is 

0 = (.,V:yII,,, 

= (d:, - 9;)'""w,,, 
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because sdz and 9; commute (since the corresponding matrices G and DO* commute; 
cf (29)). (.&)I H,, is zero for in> 3 and I>  1 because H is in generalized normal form. 
From this it follows for Hm(Z)=Zl:Ii13,hiii that 

O=(G$.)’”4H,,,= hi(pj)’””fl 
i j i = m  

here, for the sake of notational convenience, we have again turned to the coordinates 
i a s  defined above. Linear independence of the basis monomials f i  then gives the result 
hj 4 = 0 and thus 

a;:,H,,,= 1 h:.-f-O 
l i l=m 

JPIz - 

and we have proven the theorem. 

3. Normalizing a magnetic bottle 

The remaining part of this paper is dedicated to the ‘application of the generalized 
normal form theory to a class of systems that is not accessible via Gustavson’s method. 

3. I .  The model system 

We consider a ‘magnetic bottle’ which is made up of a homogeneous magnetic (dipole) 
field with a superimposed octupole contribution. In cylindrical coordinates we have: 

(32) 2 1 2  B(p, Z) :=&  e. + E2[-pz e,+ (z - i p  ) e:]. 

A configuration of this kind was used, for example, for very accurate measurements of 
the g-factor of the electron 1271. Figure 1 shows the field lines of B(p, z) and motivates 
the term ‘bottle’: At least in the vicinity of the z-axis, the motion of a charged particle 
in this type of magnetic field consists of a cyclotron oscillation about the field lines, 
superimposed to a vertical oscillation along these lines. Since the field lines converge 
towards the z-axis for larger values of lzl the particle will be reflected at some stage (if 
it does not move exactly on the Z-axis all the lime), and the resulting motion is bound. 
So B indeed functions as a bottle for charged particles. (This analysis can easily be 
made rigorous.) 

We restrict ourselves to the case p.=O, such that a particle in the bottle does not 
encircle the z-axis but continually passes through it. Afler suitable scaling we arrive 
(for BOB2 > 0) at the Hamiltonian 

H(p ,z ,p , ,p= )= f (p~+p~) f  V(p,z)  (33a) 

with the two-dimensional potential 

(33@ I ?  I 2 2  1 4  I 2 4  V(p,z)=rp + 3 p z  -6p + a p z  -kp“Z’&p6. 

II describes a system with two degrees of freedom, one of which (p) corresponds, in 
lowest-order approximation, to a harmonically bound motion while the dynamics along 
the z-axis is free in the same approximation. Note that this Hamiltonian cannot be 
dealt with by the BGNF theory. 
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P 
Figure 1. Magnetic field lines of the magnetic bottle as described by (32) with Eo= E,= 1. 
The full three-dimensional picture is obtained by rotation about the :-axis. 

In what follows, we do not restrict p to positive values but allow for negative values 
as well. This makes i f  possible to treat p and z simply as Cartesian coordinates in two 
dimensions. An example for the dynamics of our model system, obtained by numerical 
integration, is shown in figure 2. Similarly, we have numerically calculated Poincark 

- 3 '  ' I .-I -0.5 ' 0  0.5 I 
P 

Figure 2. Typical dynamics in the magnetic botlle at the energy € = O S .  The dotted lines 
show the boundary of the accessible region of the configuration space, defined by the 
condition V(p, : )<E.  
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plots for several energies E. To this end we have defined Poincart surfaces of section 
Er5 by setting p=O, 

1, :={to, ~ , P ~ , P - . ) ~ ~ ~ ~ I P ~ = ~ ;  1b:I < C E }  

and obtained the corresponding PoincarC plot by recording the poinls ( 2 , ~ : )  where the 
trajectory passes through CE with positive momentum pp (see figure 3). The system 
exhibits a typical KAM scenario when the control parameter E is increased; at low 
energies the system is nearly integrable, whereas at higher energies invariant tori break 
up and the chaotic region of phase space becomes increasingly large. 

It is important to realize that for this system a global second integral of motion 
(the first being the Hamiltonian itself) cannot exist, because the existence of such an 
integral would render the system integrable. This would be incompatible with the non- 
integrability demonstrated by the Poincart plots. Still, the preceding section shows how 
to construct a formal invariant. The resolution of this ostensible contradiction is that 
one expects the formal integral to approximate the local exact integrals of motion in 
the regular regime (where the KAM tori dominate), whereas in the stochastic regions 
the formal integral is expected to diverge. See [28] for a discussion of these convergence 
properties. 

Rather than discussing just the Hamiltonian (33) we will study the normalization 
process for the more general class of rnagnetic bottle ffamilronians which are defined 
by their quadratic contribution: 

With I= I ,  n=2, zI =z,  z 2 = p  and 02= 1 we can write the f f 2  of (33) in the form (34). 
Transformation of the corresponding Hamiltonian matrix L=JHess(H2) into 

Jordan normal form yields 

i=diag((O 0 1  o),.:.,(o~ 0 1 .  o),~m~+l,. . . , i o , ,  -io,+,, . . . - 
1 times 

Obvionsly the frequencies CO, mark the diagonalizable component of 
of L), such that we obtain 

(and therefore 

which is a formal integral of motion if H ( z )  is in generalized normal form. This result 
was already stated in [ 171, but here it could be derived with much more ease of computa- 
tion. For the specific case of (33) we have 

IN&, 2, pp. p z ) =  ; ( p 2 + d ) .  (37) 

The stage is set for application of the normalization process as described in section 2. 
In Lhe appendix we explain in some detai1,how the effort needed to normalize magnetic 
bottle Hamiltonians can be reduced considerably. As the result of these conditions we 
have obtained the formal integral of the magnetic bottle (33) up to and including 
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P x  

(4 

Pz 

0.15 

0.1 

0.05 
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-0.05 

-0.1 

-0.15 

L ,  ' J  

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 

.% 

1 1 1 1 1 1 1 1 
0.6 

0.4 

0.2 

0 

-0.2 

-0.4 

-0.6 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 

z 
( b )  

Figure 3. Poincarf plots of the magnetic bottle at the energy E as described in (he text. 
The boundary of the surface of section, defined by [p:[ = C E ,  shows up as horizontal lines. 
(a) E=O.Ol, (b )  E=0.2, ( e )  E=0.5.  
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Figure 3. (continued) 

the 14th order. The first few terms are 

I ( p ,  z, p p ,  p:) = 0.5~:  + 0.5p2+ O.O46875p;+O. l25pIp: 

+ 0.09375pzp2 - 0.1 25p$j - 0.0781 25p4 + O.5zpplp,, (38) 

- O.2SzZp; + 0.25z2p2 + O(lz[ 6). 

A complete list of all the 415 summands up to order 14 is available on request from 
the authors. Note that I(z) contains only monomials of even order, because the same 
is true for the original Hamiltonian (33). 

It is important to note the difference between the representations (37) and (38) of 
the integral of motion. The first formula applies if the Hamiltonian is already in gen- 
eralized normal form, while the second holds for the non-nonnalized Hamiltonian (33) 
in the original coordinates and is obtained from (37) by inverting the normalizing Lie 
transformations. 

To our knowledge, there is only one other exainple in the literature where normaliza- 
tion for a. full.Hamiltonian has been carried out up to such a high order [28,29]. 
(Discrete mappings,~on the other hand, have been normalized up to order 100 and 
beyond; cf [30].) One has to realize, though, that the HCnon-Heiles Hamiltonian consid- 
ered in [28, 291 is of the Gustavson type (I) ,  thus rendering ..Q& diagonal. As explained 
in the appendix, for magnetic bottle Hamiltonians d,,, is not diagonal, which makes 
the determination of the splitting (12) and the inversion of (14) a much more difficult 
task. 
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3.2.  local and global analysis of the quasi-inlegral 

The characteristic property of an integral of motion is its constincy along trajectories 
in phase space. As mentioned earlier, one cannot expect this behaviour for a formal 
integral of a non-integrable system like the magnetic bottle discussed here. But in line 
with reference [28] (and many others) we still expect convergence of I(z) in regular 
regions of phase space. 

Let us define the quasi-integral Ic'nl(z) of order m as that approximation to I ( z )  
that contains only monomials of degree in and less: 

U M Engel et a1 

I('")(z) = I @ )  + ~(lzl'""). 

In order to check the convergence of I""' as a function of in, we choose a point SE& 
of the Poincari. surface of section and evaluate the quasi-integral for z ( t )=@, (s )  with 
@,(s) being the phase flow of the system (33): 

I""'(t; s) =I"'(d?,(s)). 

Figure 4 demonstrates that it depends both on the energy (tantamount to the 'degree 
of chaoticity' of the system) and on.the starting point s whether convergence of the 
quasi-integral I ' " ' ( t ;  s) is observed or not. At the low energy E=0.01 most s yield fast 
convergence (figure 4(a)). At the energy E=0.2 divergence occurs almost everywhere, 
but it is typical that for the first few values of nr one has 'pseudo-convergence' before 
the expected divergence takes over (figure 4(6)). 

The above analysis is local in the sense that one has to specify a single point s for 
which I('")(t;  s) is evaluated. We now turn to a kind of global analysis and show how 
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Figure 4. The quasi-integral I"'"(t;s) o f  111e magnetic bottle (33)  plotted as a function of 
timeforseveraldiKerentvaluesofn~. (a) E=O.Ol,s=(O,0.05);  (h )  E=0.2 ,s=(O,0 .3) .  
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to obtain a qualitative picture of the convergence properties of f(z) in a larger region 
of phase space. 

in order to have a (though somewhat strong) criterion for convergence we say that 
P ( t ;  s)  is convergent at s if 

0.6 

0.4 

0.2 

Pz 0 

-0.2 

-0.4 

-0.6 

- 
T 0 1 1 )  Here l ( " ' ) ( s ) = l i m ~ ~ ~ ( l / ~ )  j,, I ( t ;  s) is the time average of the quasi-integral for a 

trajectory starting at s. I I  would be highly desirable to extend the definition to higher 
orders in of the quasi-integral, but this is limited by the great computational effort 
needed for this task. Our definition is similar to the one suggested in [28], but we find 
it appropriate to calculate averages over whole trajectories rather than considering just 
the behaviour at the points. 

The next step is to define a convergence function C(s) by setting 

- 

- 

- 

- 

- 

- 

- 

convergent 
divergent 

C(s):= {A ~ ~ i f ~ ( s )  is { in the sense of (39). (40) 

Though being quite coarse-grained (since it takes into account only the first few approxi- 
mants of the formal integral) C(s) allows to estimate the convergence properties reason- 
ably well. 

In figure 5 we present a convergence plot for the magnetic bottle (33) at the energy 
E=0.2. This picture should be compared with figure 3(b). On a 200 x 200 grid we have 
marked with black all points where C(s) = I indicates convergence of the quasi-integral. 

. * .  
.. .. 

# -  
. ,  

-? 

I I  
-2 -1.5 -1 -0.5 0 0.5 1.0 1.5 

2 

Figure 5. Convergence plol for the magnetic bottle at the energy E=0.2. The same Poincari 
surface is shown as in figure 3(h). On a 200 x 200 grid the~convergence function C(s) has 
been calculated and the points with C(s) = 1 have been marked black. 
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It is interesting to see that although the condition (39) is quite strong there are large 
convergent regions in &. Many of the details of the Poincari plot 3(b)  show up in the 
convergence plot as well. As expected, convergence is most frequent in the centre of 
the picture. Furthermore, the hyperbolic periodic points of the two dominant Birkhoff 
chains (of period four and six, respectively) in figure 3(b) are clearly represented in 
figure 5 by clouds of black marks. This is surprising, because in the neighbourhoods 
of these hyperbolic points one would expect distinct divergent behaviour, caused by 
the chaotic dynamics in a heteroclinic tangle scenario. 

As an aside we remark that the convergence of the quasi-integral for the magnetic 
bottle considered here is worse than the convergence for the Hbnon-Heiles system 
discussed in [ZS]. This seems to be due to the fact that for the latter system the accessible 
region of phase space is bounded, whereas for the magnetic bottle the dynamical region 
extends infinitely dong the z-axis. ,, 

In order to get refined incormation about the convergence properties of the l””’(z) 
as a function of ni we now modify the rule for marking points in the convergence plot. 
As a measure for the deviation of I””)@) from its mean value we calculate the standard 
deviation 

U M Engel et ul 

(I(’”’(t; s ) -F( s ) )*  dt 
7 - m  

and for normalization (and for comparability of results that be lonao  different s and 
thus to different mean values of the,quasi-integral) we divide by /I(”’)(s)/: 

This quantity will play a key role in the following. We can take 

7 p ’ ( S )  < 7 y * ) ( S )  for m=4,G.S,. . . , 14 (41) 

as new necessary criterion for convergence. This criterion is similar, but not equal to 
(39). With (41) one can say more about the divergent quasi-integrals: For each of them 
there is an iizo(s) such that q‘””’(s)< q(’”’(s) for all irz#ino. A convergent (in the sense 
of (41)) quasi-integral is characterized by nio(s)= 14 (the highest order of approxima- 
tion). If divergence occurs from the beginning, i.e. if the deviation of the quasi-integral 
from its mean value grows for all available in, then we have ino(s) =2. Intermediate 
values are possible as well. A typical situation (with i i to=S)  is shown in figure 6. 

0.1 i 

m 
Figure 6. A typical graph of $“”(s). A regioii of pseudo-convergence and a divergent region 
arc separated by 1n7&)=8. Tlie parameters for this picture are E=0.2, s=(O,O.3). 
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Again we can mark the points of the surface of section of the magnetic bottle, this 
time according lo the value of f+dS).  The result can be seen in figure 7, which is to be 
compared with the Poincare plots of figure 3. The dark regions correspond to larger 
valucs of rrio(s), thus indicating-curir gram sa/i.y--convergence, while points in the light 
grey or white areas have small nin(s), which means that q””’(s) increases quite from the 
beginning. The Poincare plot 3(a) at a very low energy shows regular motion, and 

Figure 1. nh($)-ptots roar the magnetic bottle at the ~ a m c  energies as in figure 3. Acain the 
Poincad surface is shown as a 200 x 200 grid of points which are shaded. this time according 
to their respective values of m,(s), as shown in the key. ( a )  E=O.Ol. (/I)  E=0.2. ( c )  E=  
0.5. 
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figure 7 ( 0 )  accordingly indicates convergence in large regions of Zg. The light grey 
spots in the centre of the figure must not be mistaken as indicating divergent behaviour. 
On the contrary, convergence is excellent around the origin, such that very small values 
of  q'"'(s) are being compared, and values of  m0(s) larger than two are due to  the 
limited accuracy of the numerical calculation and round-off. Convergence deteriorates 
with increasing E (and thus increasing chaolicity) as the comparison of figures 3 ( h ) ,  (c) 
and 7 ( h ) .  (c) shows. In particular, figure 7 ( b )  reproduces the content of the Kaluia- 
Robnik-type figure 5 very well and even adds much more information about the 
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convergent regions. We conclude that the iii,(s)-plots are considerably better suited 
than the C(s)-plots for the analysis of the convergence properties of the quasi-integral. 

It is important to keep in mind that we are using quite a special definition of 
‘convergence’ here. Whilst this is useful for the present discussion, comparison with 
rigorous theoretical results about the divergence mechanism [31, 321 is delicate. Gen- 
erally, (pseudo-) convergence (in the usual sense) is expected within a disc, which is 
compatible with figures 5 and 7(a). But figure 7 ( h )  seems to indicate that convergence 
has spread into the region between the island chains of period four and six. a t  variance 
to the theoretical prediction. The reason being that rito(s)=2 or  4 reflects only the 
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behaviour for the first few orders J I I  and is no direct indicator for true convergence. So 
the values of J J & )  can be taken only as a vague phenomenological hint towards true 
convergence o r  divergence. 

Figure 7(b) already reproduces reasonably well the features of the corresponding 
Poincark plot. but only in regions not too far away from the origin. In an attempt to 
enlarge the region that is accessible for the analysis we make the following exponential 
ansnti for the normalized standard deviations as functions of n7: 

U M Engel et nl 

(42) q ( n r ) ( s )  g a  eol(lllll 0 
with a(s) and a(s) to be determined. Here, one is especially interested i n  the speed of 
convergence/divergence tliat is expressed by a@). For a justification of the approxima- 
tion (42), we have considered some typical graphs of q'"')(s) in figure 8 and determined 
(with a least-squares method) the corresponding n(s) and a(s). As can be concluded 
from figures 8(a) and (b), often the approximation (42) seeins to work reasonably well. 
Figure X(c) shows a case where a transition from convergence to divergence occurs. 
Taking into account situations like this, we have decided to rely only on the q("'](s) 

0.0001 - 
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'I(%) l~~ 
10' 

2 4 6 8 10 12 14 
m 

(4 0.1 ,p, 

0.003 O.Ool d 2 4 6 8 10 12 14 ~: 

m 
Figure 8. Normalized standard devhtions ij""'(s) (marked by 0) and (heir approxiinants 
o(s) e"'' (solid lines) lor the magnetic botlle. The parameters o(s) and a(s) lhave been 
computed using Ihe data for m=8,  10, 12. 14. (a) E=O.Ol. s=(0.81.0.0553): ( h )  E=0.2: 
s=(1.69,0.597); (e) E=0.2; s=(O,O.3). 
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with i i i = 8 .  IO,  12, 14 for tlie calculation of a(s ) ,  because we are mainly interested in 
tlie convergence properties for larger values of i i i .  With this convention even a behaviour 
such as that in figure S(c) can he handled reasonably. 

It is one of the advantages of the a(s)-method that one obtains a continuous spec- 
trum of values of Q ( s ) ,  as opposed lo the discrete spectra of C(s)  and i i i 0 (s ) .  This 
becomes apparent in figure 9, where we show again Xe.z, now shaded according to a(s) .  
The lighter the grey, the larger a(s)  and thus the faster the divergence of the quasi- 
integral. The central portion of the picture is similar to the one of figure 7(h) ,  but now 
the outer regions show some structure, too. Comparing with the corresponding PoincarC- 

Fipre 9. n(s)-plot lor Ihe magnetic bottle al  tlic cnerpy C=O.2. The 200 x 200 grid poinls 
are shaded according 10 lheir respective values of a(%). The calculation or these values is 
based on $''''Is) for,!t=X. IO, 12. 14. 
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plot (figure 3(b)) one sees that the a@)-plot clearly marks the third and fourth largest 
Birkhoff chains as well. Even more structure can be detected by more careful analysis 
of the picture. So the ansatz (42) seems to be justified. 

U M Engd et a1 

4. Concluding remarks 

Let us briefly summarize our main results. We have described a generalized version of 
the powerful tool of normal form theory for Hamiltonian systems. Using this gen- 
eralized technique, it is now possible to analyze any Hamiltonian that is given as a 
power series in phase-space coordinates. Even if the Hamiltonian is not given in the 
form of a power series one can always expand H into its Taylor series and normalize 
the truncated expansion. Thus a large variety of Hamiltonian systems can be analysed 
in a unified way. 

The most important result of a normalization is the derivation of a formal integral 
of motion that, in general, is different from (and often independent of) the already 
known integral H. That means that one can obtain substantial new information about 
the system by normalization. Convergence of this formal integral of motion cannot be 
taken for granted. Addressing this problem, we have suggested some new methods for 
analysing the convergence properties of the truncated formal integral. We have found 
that these quasi-integrals are of physical interest, since their convergence properties 
reflect many of the characteristics of the corresponding Poincark plots. 

It is certainly necessary to carry the analysis of the convergence of the quasi-integrals 
further. Many authors [IO,  33,291 have suggested studying the poles of Pad6 approxi- 
mations to the quasi-integrals. The location and the number of poles of these approxim- 
ants then allow us to gauge the properties of f('''l. 

Appendix. Details of the normalization process for a magnetic bottle 

In this appendix we discuss some details of the transformation of a Hamiltonian with 
a quadratic part (34) into generalized normal form. More specifically, we show how to 
simplify the Lie operator 

which is adjoint to this particular f&. 
The unitary matrix that by a similarity transformation puts the Hamiltonian matrix 

L= 

lo 
/= w, -w/+1 

\ 0 -W#8 
... 
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into the Jordan normal form L=MLM* of (35) is 

M =  

1 
- (-ieT+ e;,) 
4 

with e, being the canonical base vectors of R2".,This formula can easily be derived 
by performing a certain permutation of the rows and columns first, followed by a 
transformation similar to (15). 

In  the new coordinates i= Mz the Lie operator takes onthe form 

This representation of the Lie operator is advantageous, because here we have collected 
as many non-zero entries (of the matrix representation) of d,,, on the diagonal as 
possible. Only the first sum yields an off-diagonal contribution. 

We have not yet made any assumptions about the ordering of the monomials 2' in 
the basis of %. If one chooses the lexicographical ordering [2]  of the basis monomials, 
then the matrix representation of .,&, becomes an upper diagonal matrix for all in. and 
all the manipulations of d,,, that are necessary in the course of the normalization 
procedure (solving linear equations, inverting .d,,,, . . .) become easier and consume 
much less computing time. 

In the case I= 1 it is possible to achieve even further simplification by an appropriate 
ordering of the basis monomials of Z,,. One can introduce the so-called inugnelic boltfe 
ordering of monomials which results in x, being bi-diagonal. 

~~ 
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